Skip to content

Keuka College News

Light, Computers, Science!

Talk to Dr. Tom Carroll for just a few minutes about the new high-tech instruments in the third-floor analysis lab in Jephson Science Center and you get the sense the 30-year professor of chemistry at Keuka College is more excited than a kid on Christmas morning.

To the untrained eye, the four new Perkin-Elmer laboratory machines resemble something akin to desktop printer-copiers. But the machines are capable of the kind of data analysis a researcher can use when an unknown substance is handed over with the instructions “find out what this is and report back to me.” With one test on any of these machines, a student researcher could identify in minutes what used to take hours on paper. Carroll is thrilled students – and faculty – can now make regular use of the new equipment.

To biology major Rebecca Evanicki ’14, the new machines enable students to analyze unknown compounds in such a way that it’s like “solving a mystery,” she said.

The HPLC may look like a stack of drawers on a desktop printer, but it can analyze liquids in multiple ways.

Indeed, Associate Professor of Chemistry Andrew Robak is already planning to stage a fake crime scene in the organic chemistry lab next door later this spring. He’ll give the students in his organic chemistry class one day to collect evidence and they’ll spend the last few weeks of the semester in the analysis lab using the new machines to identify every substance, “like a CSI practice version,” he said, referring to the popular TV crime show.

It’s the kind of innovation that brings the student research at Jephson Science Center into a new era of digital learning, which is part of the College’s Long-Range Strategic Plan. Thanks to a $137,000 grant from Jephson Educational Trusts, the new machines were purchased and installed between semesters. They represent significant technology improvements that will enhance science coursework and research for students and faculty.

To formally recognize the new lab capabilities, the College will host its first-ever Innovation Celebration, set for 2-4 p.m., Friday, March 14, which is National Pi Day. In mathematics, Pi (represented by the Greek letter π) begins with the numbers 3.14159 and represents the ratio of the circumference of a circle to its diameter. Pi is infinite and has been calculated to over one trillion digits beyond its decimal point; contests to recite a portion of those digits are often part of the worldwide celebration. Keuka College will host its own Pi recitation contest, and guests can also take part in an unveiling ceremony, enjoy science-themed refreshments, and browse student work on display. Guided tours through the instrument lab will also be offered, and President Jorge L. Díaz-Herrera will give a videotaped message of congratulations.

Check out a unique digital timeline of stories and photos, marking moments of achievement in the College’s science history since the former Millspaugh Science Center was renamed the Jephson Science Center.

The HP-LC with its bottles and tubes.

One machine, the High-Pressure Liquid Chromatograph (HPLC), carries liquids from glass bottles through thin plastic tubes, passing through several compartments for analysis. According to Robak, different compartments contain an oven, vacuum pump, solution tray, and detectors, respectively.

On the tabletop directly across from it sits another machine, the Gas Chromatograph-Mass Spectrometer (GC/MS or “GC – Mass Spec”). To put it simply, the GC separates mixtures into individual components, while the “mass spec” identifies separate fragments, so the scientist can determine what the molecules are, Carroll said. In scientific terms, this process is known as ionizing. The GC/MS features a rotating unit that can extract samples from a tray of up to 108 small vials at one time, conducting analysis as programmed by a small touch screen at the side.

A computer connected to the GC/MS, running high-performance software, analyzes in minutes what used to take hours.

Connected to the CG/MS is a new computer running high-performance software that converts the data readings of molecular ions into a bevy of colorful charts and graphs. Based on the peaks and plunges of a fragment’s chart, the computer searches a large digital library to find the closest match – all in a matter of seconds, Evanicki said. Without it, a student would have to calculate results by hand to narrow down what fragments might be present and then cross-check his or her shortlist of possibilities against a book to determine the answer, she said.

On another table against the wall, a smaller machine, the Fourier Transform Infrared Spectrometer (FTIR), contains an oval plate with a small diamond reflective element through which infrared light can pass. Connected to another computer running high-speed software, the FTIR is able to provide information about the identity of liquid or solid compounds, Carroll said.

The fourth machine, a Lambda-35, is a newer model of a UV spectrometer already in the lab. It uses visible and ultraviolet light to determine the absorption spectrum of a solution, which will show how much light it absorbs across a range of wavelengths, from visible to UV rays.

Evanicki '14 examines the tray of the GC/MS, which can hold up to 108 vials of solution or compound for analysis.

The GC/MS is Evanicki’s favorite because various tests on multiple samples can be run in one sitting without switching vials in the tray, she said. In addition, a student can run a series of different tests on just one sample.

“There are just so many different things you can do with it,” Evanicki said.

She should know. Evanicki spent the bulk of January alongside biochemistry major Brian DelPino ’14, setting up the new machines, conducting test runs and writing equipment usage manuals, all as part of their senior Field Periods™. Carroll defers to the duo with pride, dubbing their user guides “equipment manuals for dummies.”

“Step One: Turn the machine on,” he read aloud from a sheaf of typewritten instructions, before continuing tongue-in-cheek. “Step Two: If you have any questions or problems, contact Rebecca or Brian.”

On Wednesday, sophomores in Robak’s organic chemistry class took a sneak peek at the new equipment they were due to try out in their Thursday lab. About a dozen other students in Carroll’s Analytical Chemistry course will also run utilize the instrument lab this spring. Enthusiasm is running high, not just for the chance to use the machines this semester, but for the rest of their undergraduate studies.

“We’re all very excited about the new equipment and excited to learn how to use it – science is fun!” said biology major Heidi VanBuskirk ’16.

For more information on the Innovation Celebration, please contact spevents@keuka.edu or call (315) 279-5238.

Leave a Reply

All comments are governed by the Keuka.edu Community Standards.
Want your photo next to your name?

*